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Soliton dynamics in a microstructured lattice model 
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Curie, Tour 66, 4 Place Jussieu, 15252 Paris CCdex 05, France 

Received 26 November 1990 

Abstract. The nonlinear dynamics of localized structures of the soliton type in a lattice 
model involving internal degrees of freedom in rotation is presented. The physical model 
consists basically of a one-dimensional monoatomic chain equipped with microscopic 
electric dipoles associated with molecular groups. The model is particularly suitable for 
molecular ferroelectric crystals such as sodium nitrite exhibiting structures in ferroelectric 
domains and walls or for long chains of polymers Such as crystalline polyethylene or 
polyvinylidene fluoride and others where molecular groups perform rotational motions. 
Two main types of motion can be distinguished in this picture: (i) the longitudinal and 
transverse displacements of the mass centre of the molecular group and (ii) two rigid-body 
rotational motions of the electric dipoles about the chain axis and perpendicular to it, 

The propagation of coupled solitons is investigated for two elementary configurations. 
A situation for which all the dipoles rotate perpendicularly to the chain axis is first studied. 
A second configuration is next considered when the dipole rotation takes place about the 
chain axis. For both configurations and from the continuum approximation framework the 
existence of coupled solitons in rotation and lattice deformation are proved and the role 
played by the coupling between rotation and displacements are placed in evidence leading 
to particularly interesting soliton solutions. The set of nonlinear equations is made of (i) 
the wave equations for the elastic displacements and (ii) an equation of the sine-Gordon 
type being nonlinearly coupled. The soliton solutions, thus obtained, can be interpreted 
as the motion, coupled to the elastic behaviour, of a domain wall in a ferroelectric crystal 
or as the motion of a twist defect in a long deformable chain ofmacromolecules for polymer 
materials. For each situation and soliton solution, the energy of the system as well as the 
soliton width are given. The most meaningful results are illustrated by means of numerical 
simulations. 

1. Introduction 

The main purpose of this paper is to construct and investigate a lattice model exhibiting 
particularly interesting nonlinear phenomena connected with internal degrees offreedom 
inherent to a refine description of the material. The basic lattice model consists of a 
chain of particles which cannot be reduced to a point endowed with a simple mass, 
but the particle displays an angular momentum. The latter is, of course, due to the 
additional degrees of freedom which are placed in evidence by considering fine 
kinematic description involving rotational motions. A good picture of such media can 
be provided by a deformable lattice equipped, at each of its nodes, with molecules 
performing rigid-body rotational motions about their mass centre [ l ,  21. Therefore, in 
addition to the usual particle displacements we must take the microgyration of the 
molecules into account. However, the nonlinear dynamics of such a lattice requires 
interactions which depend on the physics of the microsystem being considered. Then, 
such microstructured lattices are models for molecular ferroelectric crystals of which 
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sodium nitrite is a good prototype [3-51. The model is also suitable for the study of 
twist defects in a long chain of polymer where the molecular structure involves rotational 
degrees of freedom, and thus crystalline polyethelene [6], polyvinyline fluoride [7] or 
polytetrafluoroethylene [8] are good examples of polymers. Moreover, the model can 
be extended to long chains of biological macromolecules called DNA which have a 
helical structure including internally rotational motions [9-111. On the basis of the 
micmstructured lattice model, we aim at examining the propagation of nonlinear 
excitations of the soliton type. To be more precise we attempt to prove the existence 
of kink defect motions as coupled solitons in rotation-deformation. 

Ordered-disordered structures relating to phase transitions in crystals often involve 
microstructured lattices such as chains of magnetic spins in ferromagnetic crystals 
[12,13] or microscopic electric dipoles in ferroelectric crystals [14, 151. Furthermore, 
different ordered arrangements are separated by localized structures or domain walls 
which are able to move by applying an appropriate field for instance. Domain walls 
appear as defects breaking the well-ordered arrangement of dipoles. Then, the dynamics 
of such ‘wall defects’ can be studied as coherent structures of the soliton type which 
propagate keeping their own characteristic properties (velocity, shape, etc.). In the 
present work, special attention is devoted to molecular crystals for which a microscopic 
electric dipole is rigidly attached to the molecular group-the microstructure-and the 
latter plays the role of ‘spin’. Except for differing physical interpretations, the motion 
of domain walls in ferroelectric crystals can be compared to the motion of Bloch or 
N6el walls in ferromagnets for which the orientation of magnetic spins, within the 
wall thickness, evolves by rotations parallel (Bloch wall) or perpendicular (Nee1 wall) 
to the plane of the wall [16,17]. 

We concentrate, here, on a lattice model for which the molecular interactions 
involving internal degrees of freedom in rotation are described by the dipole-dipole 
interactions including anisotropic effects. These interactions are obviously added to 
the usual interatomic forces acting between lattice particles, so that couplings between 
the lattice displacements and rotational motions of the molecular groups are accounted 
for. The equations governing the physical system are nonlinear and dispersive. Accord- 
ingly, we may obtain soliton solutions which describe the coupled motions in molecule 
rotations and lattice deformations. Nevertheless, because the nonlinear difference- 
differential equations ruling the microscopic model are not tractable, we must consider 
the continuum approximation. Then, the set of nonlinear equations thus obtained seems 
to be of particular interest, because of the coupling between the wave equations for 
the elastic displacements and sine-Gordon equations for the molecule rotations, these 
equations being coupled through the rotation-displacement couplings. Furthermore, 
these nonlinear coupled equations permit the propagation of nonlinear excitations of 
the soliton type. The soliton concept occupies a key position in various fields of physics 
[ 18, 191 (nonlinear optics, plasma physics, hydrodynamics, biological materials, con- 
densed matter physics, etc.) and the present study illustrates some ideas of nonlinear 
science which allow one to model the nonlinear dynamics of the real world. 

The nonlinear problems that we want to tackle will be carried out by considering 
a lattice model which consists of a simple deformable atomic chain equipped with 
microscopic electric dipoles. Each dipole is, in fact, associated with a molecular group 
which performs large rotational motions. Therefore, an angular momentum is defined. 
Particular attention is paid to molecular interactions, which are provided by dipole- 
dipole interactions extended to anisotropic effects due to the neighbouring atomic chains. 
The lattice model can be also compared, in its continuum approximation, to a more 
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general theory of confinua with microstructure [20, 211. More precisely, such a micro- 
structure involving internal degrees of freedom is kinematically described, in some 
abstract manner, by means of a vector field, called a director, which is attached to  
each material point in the deformable continuum [21,22]. The material points of the 
medium are endowed with a tensor of inertia in addition to the usual mass density. 
In the framework of the present lattice model, the notion of a director field is identified 
with the dipoles and a continuous density of molecular rotations can be defined. 
However, the comparison is well established in the context of the nonlinear theory of 
oriented media for which the existence of solitons in rotation and deformation has 
been proved [23,24]. 

We begin, in section 2, with the description of a simple one-dimensional lattice 
model equipped with rotatory electric dipoles. Despite the overall simplicity this leads 
to a model which is rich enough to allow a detailed analysis of interesting nonlinear 
phenomena. On introducing appropriate lnteratomlc and intermoiecuiar interactions, 
we build up the Hamiltonian of the discrete system. Two simple configurations are 
deduced from the model next. A first situation referred to as A, for which the dipole 
rotation takes place about an axis perpendicular to the chain axis, is presented in 
section 3. The equations of motion specialized for this configuration are given in a 
subsection. The continuum approximation of the microscopic model yields a set of 
nonlinear coupled equations which consists of two wave equations for the longitudinal 
and transverse elastic waves nonlinearly coupled to a sine-Gordon equation for the 
rotational motion of the dipoles. The problem of stationary wave solutions allows one 
to place different kinds of coherent structures in evidence. A second configuration 
corresponding to the rotation of the dipoles about the chain axis is investigated in 
section 4. The way of solving this situation is similar to that of the first one and we 
also obtain coupled solitons in rotation and deformation. Finally, some concluding 
remarks are drawn in section 5 ;  some extensions of the model and other problems 
relating to nonlinear phenomena in microstructured lattices are evoked as well. 

2. Description of the model 

Let us consider a one-dimensional monoatomic chain made of N particles ( N  can be 
large enough in order to avoid any boundary effects) and equipped, at each node, with 
a molecular group (see figure l ( a ) ) .  We propose next that each molecular group is 
endowed with a microscopic electric dipole of constant length which indicates the 
molecule orientation. The model thus built is suitable for ferroelectric molecular crystals 
such as sodium nitrite (NaNOJ for which the nitrite group (NO;) can be considered 
as a small rigid-body surrounded by four sodium (Na+) ions. Moreover, the motions 
of the NO; group relative to the Na+ ions can he neglected in the first approximation, 
since these relative motions would yield very high frequencies [3-5,251. The lattice 
model can also correspond to chains of polymers such as crystalline polythylene where 
the CH, molecule suffers a rotation about the chain axis [6,26]. Polyvinylidene fluoride 
(mv2) [7] or polytetrafluoroethylene (PTFE) where the CF, units are subject to rotational 
motions [8,27] are also good candidates for our model. Furthermore, extension of the 
model to biological materials such as DNA can be considered [IO, 111. 

Accordingly, we can reduce the crystal cell to a point equipped with the global 
mass of the cell at its mass centre. Moreover, in order to account for the molecular 
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Figure 1. Lattice model: ( a )  one-dimensional atomic chain equipped with rotatory 
molecular groups (microstructures), ( b )  angles of rotations for the dipoles or molecular 
groups. E., rotation about the i axis; q,,, rotation about the x' axis. 

group, rotatory microscopic electric dipoles are added to each lattice point. The forces 
acting on the system result from (i) the ionic interactions between neighbouring particles 
as in classical ionic crystals, (ii) the mutual interactions between microscopic dipoles 
and (iii) the electrostatic interactions due to the external field E. On the other hand, 
the possible motions of the lattice are (i) the longitudinal and transverse displacements 
of the mass centre of the nth crystalline cell denoted by U. and V., respectively, and 
(ii) the rigid-body rotational motions of the microscopic dipoles or molecules. The latter 
can have two angles of rotation (see inset of figure l (b) ) ,  the angle 8. of the plane 
(II) about the z axis and the angle tpDn corresponding to a rotation in the plane (II) 
about an axis perpendicular to it. We also assume that the lattice displacements are 
infinitesimal whereas the rotations may have large amplitudes. 

The Hamiltonian of the discrete system is classically obtained by expanding the 
mutual electrostatic energy between dipoles up to the first order in the lattice deforma- 
tion. This allows us to place the interacting energy between the dipoles and lattice 
deformations in evidence [15,28]. The Hamiltonian can be then written as the following 
sum: 

( 1 )  H = K + WIa, + Wdi, + WLn, + Wext. 
The kinetic energy of the lattice including both translational and rotational motions is 
given by 

K = i x  (0'. + V: + e:+ 4;) (2) 
n 

where appropriate non-dimensional notations have been used, and the particle mass 
and moments of inertia have been set to unity for ease of presentation. The energy of 
the deformable latfice reads as 

Wht =z ~ [ K L (  - KT( vn+t - Vn)'] (3) 

where KL and KT are the longitudinal and transverse coefficients of the interacting 
forces, The energy of the dipole interactions is written as 

W , , = ~ [ E ( P n  'P.+, -3p;p:+,)+7?P:P:+r+ VI?'.PY.+*l. (4) 

We denote by p. the unit vector such that the microscopic dipole is Pn = Popn, and pz 
and p ;  hold for the projections of p .  onto the x and y axis, respectively. The coefficient 
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E = P;/4?m3~, corresponds to the dipole-dipole interaction in vacuum ( E , ,  is the vacuum 
dielectric constant). Anisotropic terms in the x and y directions have been added in 
order to take the environment of the atomic chain into account. These anisotropic 
terms are characterized by the parameters q and v, which allows one to favour one 
direction at the cost of the other one (q >> Y or q << U). The energy of interaction between 
the lattice of dipoles and lattice deformation is provided by 

E 
W , . , = - 3 - ~ [ ( P . P . + , - 3 P ~ P ~ + , ) ( U . + , -  ~ " ~ + ~ P ~ P y . + l + P : P ~ + l ~ ~ ~ " + l -  V")l ( 5 )  

a .  

which is deduced from the electrostatic dipole energy. Finally, the energy due to the 
extemaljeld applied to the lattice is simply given by 

Wcxt=PoLE.pn (6) 

where E is the applied field. 

setting 
The Hamiltonian of the system can be rewritten in terms of angles of rotations by 

(7) 

At this stage of the work two elementary configurations can be extracted from the 
complete problem: (i) the configuration (below referred to as A) defined by putting 
rpn = 0 and 0. # 0 (all the dipoles rotate about the z axis); and (ii) the configuration 
B for which the dipoles rotate about the chain axis and 0. = n/2. The more complex 
problem, where the rotations rp, and 0. are both considered, will be undertaken in 

T p. = (cos rp. cos e., cos rp. sin e., sin rp.) . 

another part of the work. I 

3. Coherent structures for Configuration A 

3.1. Equations of motion for the discrete system 

On equating cp. to zero in the energies ( 2 ) - ( 5 ) ,  the Hamiltonian takes on the following 
form: 

HA=x +( 0'. + v: +@i)+Z f[Ct( U"+, - UJ2+ c:c Vn+1 - Vd21 

+Xf[a( - U") cos 0, -p(Vn+,-  V,) sin 0.1 

-;[4cos( @ " + l - @ " ) - x c o s (  @ . + I f @ .  )] 
where we have set 

p =:a 188 
a ( &  - q - U )  a =  
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and the new scale time ! J ( E  - 11 - u ) / 2  has been introduced where E - 11 - Y > 0 has 
been assumed. Moreover, the external field has been dropped and we have set 0. = 28.. 
The Euler-Lagrange equations can be derived from (8) and they read as 

M K Sayndi and J Pouget 

fi" - ct(u"+,+ un -2U.) =fa(cos e.+,-cos l3 -J  ( 9 0 )  

Vn - c$( v.+,+ v,, - 2 ~ " )  =-$.?(sin -sin en-,) ( 9 6 )  
g " - _ [ s i n t ( ~ . , , - ~ , ) - s i n t ( O .  

=X[sinf(@.+l+o.)+sint(O. +O.-,)I 2 

+Sa(U.+, - sin @.+ip(V.+,  - vn-,) cos 0.. ( 9 c )  
The study of the set of difference-differential equations is not tractable in an analytical 
" C Z ' J ,  L L l L  l l " L L l l l l C ' , l  "J'LCZLULC" "L a".,,, U l D C L C L C i  c;y"an"lLJ GLLI us, I I U W C K I ,  J U I V S "  uy 
means of numerical investigations by using well-defined initial and boundary condi- 
tions. Nevertheless, we adopt the continuum approximation in order to get some more 
precise information about the solutions. 

..,"., rh. A...." ...:,.- ..F I.." h A:-,.--*- e.-.. ..LA-- L- L --#..-A L.. 

3.2. Continuum approximation 

We suppose now that the discrete displacements and rotations are slowly varying over 
a crystalline spacing. Furthermore, the attention is focused on dynamic processes of 
spatially extended waves. After some classical manipulations where we have supposed 
that 1x1 << 4 and expanded the discrete functions in Taylor series around x = na, we obtain 

U,, -ctu, = (Y(c0s O ) ,  

v,, - C$v, = -p(sin e), 
O,,  -0, = x  sin O +  aUx sin O + p V x  cos 0. 

( l o a )  

( lob)  

(10c) 

The change of space variable X = x / a  has been introduced. These equations can be 
deduced from the following Hamiltonian density: 

hA - h, = f( Uf + V:+ Of) +f( Ct U: + Ct V: + O ; )  

+x cos @ + a l l ,  cos 0 - p V ,  sin 0. (11) 

The structure of the system of nonlinear equations is of special interest. It is made of 
two wave equations for the elastic displacements ( U and V) and a sineGordon equation 
for the rotation 0 (twice the physical dipole rotation), each equation being nonlinearly 
coupled. It is noteworthy mentioning that for small rotations the linearized equations 
(10a)-(10c) can be compared, on the one hand, to the linear equations deduced from 
the fully continuum approach to ferroelectric crystals [29] and, on the other hand, to 
the one-dimensional version of the elastic micropolar media [30,31]. Moreover, the 
continuum approximation of the present lattice model can be also compared to the 
equations deduced from the nonlinear continuum model of oriented media [24] or 
micropoiar eiastic crystais [ E j .  

Some obvious properties of the system (10) can be noted. First of all, let (U, V, 0) 
be a solution for x > 0. Then, (i) (-U, - V, x + 0) is also a solution by changing x into 
-x. so that we suppose, henceforth, that x > 0, (ii) (U, - V, -0) and (U, V, 0+ 2k7r) 
are also solutions. The set of equations (10) possesses, of course, uniform static solutions 
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such that U = U, = constant, V = V, = constant and 0 = klr ( k  E Z)  which are also 
equilibrium points of the physical system. If the coupling coefficients are neglected 
the set of equation (10) reduces to the uncoupled elastic wave equations for the 
displacements U and V, and a sine-Gordon equation for the rotation 0 [ 18,33,341. 
We notice that the following time and length scale changes 4 t, 4 X and (a, P ) / &  
allow one to remove the coefficient x. This means that the characteristic time and 
length of the nonlinear excitations is monitored by x and, consequently, the smaller 
the coefficient x the better the continuum model. 

3.3. Nonlinear excitation solutions 

The simplest idea is to search for solutions in the form of travelling waves, that is, a 
solution (U, V, 0) to equations (lOa)-(lOc) as a function of a single variable 5 =  
X - X , - C t  where C is some phase velocity and X ,  is a constant. Then, we can 
eliminate the deformations U, and V, from equations ( l o a )  and (lob) and substitute 
them into equation (lOc) to arrive at 

(1-C2)0, ,=-x(s inO+ts(c)  s in20)  (12) 
where we have defined 

P 2  a2 XS( C )  = ~ - - c:-c2 C ; - C 2 '  

From the knowledge of the rotation 0, we can compute the deformation state with 

a 
cos 0 (I =-- c:-c2 

VI=- P sin@. c:- c2 
We assume that C differs from TC, or FCT. We note that the problem of nonlinear 
excitations of the somewhat complicated system (10) amounts to solving a nonlinear 
ordinary differential equation of the double sine-Gordon type. Thus, equation (12) 
possesses a first integral which is 

i ( l - C 2 ) ( 0 , ) 2 =  V(0)- v, 
V ( ~ ) = X ( c o s 0 + ~ S c o s 2 0 )  

where V, is an integration constant which can be connected with the total energy of 
the system. The physical meaning of equation ( 1 5 1 )  is now clear, it stands for an 
equation goveming the motion of a particle of mass (1 - C2) in the periodic 
potential V(0). 

Different classes of potential (156) are plotted in figure 2 according to the value 
of S (since x >  0, then IC1 < 1 is only considered). (A) For [SI < 1, the potential (see 
figure 2 ( a ) )  has equilibrium points 0 = FT which are stable while the point 0 = 0 is 
unstable. The possible solutions to equation (15) can be qualitatively discussed on the 
basis of the phase trajectory diagram in the plane (0,0,) given in figure 3. The 
corresponding trajectories are shown in figure 3(a): for V0/x < S/4- 1 ,  curve (a) in 
figure 3 ( a )  corresponds to an aperiodic solution with a 2lr pseudo-period, this solution 
is drawn in figure 4(a) for the rotation 0 together with the deformations U, and V,. 
This result can be interpreted as a structure made of spatially periodic arrangements 
of domains of upward and downward dipoles separated by walls. Curve (b) in 
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Flgure2. ConfigurationA potential V(@) (equation ( ISb) ) for (a )  l S l < l , ( b )  S c - I  and 
( e )  s>1. 

\ -.._ ___.__.__.... 1 .....__._____... 7 
I 

Figure 3. Configuration A typical trajectories in the phase plane (e,@,) corresponding 
tothcpotcntial V(O)(f igureZ)for(o)  I S I < l , ( b ) S < - l a n d ( c ) S > L .  
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5 Figure 4. Configuration A solutions comsponding 
to the trajectories platted in figure 3 ( a )  (161 < 1) ((i) 
elongation, (ii) shear, (iii) rotation). Solution for ( a )  
V,fx  < 6/4- 1, aperiodic waves, ( b )  V d x  = 614-1, 
soliton solution and ( e )  6/4-1< V o f x < 1 + S / 4 ,  

QLLL u p u  
I C 1  periodic waves. 

figure 3(a ) ,  for which V0/x = 8 / 4 -  1, leads to the soliton solution sketched in figure 
4(b ) .  Next, for 1 + 8 / 4 3  V 0 / x  > 814 - 1, the solution is a periodic cnoidal wave, which 
can be expressed in terms of Jacobian elliptic functions. This solution, plotted in figure 
4(c ) ,  can be seen as small domains where the dipoles perform rather large rotations 
from one domain to the other one. Finally, there i s  no solution for V0/x  > 1 + 8/4.  
(B) A second situation occurs when 8<-1, in this case there exists e,, such that 
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cos O,= -]/a, and the potential (1%) (see figure 2(b)) has stable equilibrium points 
0 = 0 and 0 = r s whereas the points 0 = TOo are unstable. The trajectories correspond- 
ing to this case are plotted in figure 3(b), and, for V, /x<  S/4-  1, trajectory (a) leads 
to an aperiodic solution as in the first situation. Figure 5(a) shows the solution for the 
rotation and deformations. For V0/x = S/4-  1 ,  curve (b) corresponds to the soliton 
solution which passes through a small zone around zero where the dipoles are almost 
parallel to the chain axis (see figure 5(b)). A periodic solution is provided by trajectory 
(c) for S/4 -  1 < V0/x< 1+6/4,  and this solution is drawn in figure 5(c). A different 
style of periodic solutions is illustrated in figure 5( c') for V, such as the corresponding 
trajectory is close to curve (d). These periodic solutions can be considered, in fact, as 
an array of kink-antikink pairs travelling along the chain axis. We notice, moreover, 
the likeness between the half period of the periodic solutions (figure 5 ( c )  or 5(c')) and 
the solutions plotted in figure 5(b) or  5 ( d ) .  A particular case, for V0/x = 1 + S/4, gives 
curve (d) in figure 3(b). This yields a pulse-like soliton depicted in figure 5 ( d ) .  Another 
kind of pulse soliton (still for VO/x = 1 + S/4) is plotted in figure 5 ( d ' ) ,  this situation 
will be discussed in the next subsection. At length, for -(2+ S2)/4S> V,/x > 1 + 6/4, 
we have small oscillations around the points TO,. (C) The last situation corresponds 
to S> 1, for which the potential (15b) is plotted in figure 2 ( c )  and the associated 
trajectories are given in figure 3( c). The discussion is similar to that ofthe two preceding 
situations. For V0/x<-(2+S2)/4S, curve (a) in figure 3(c) is the trajectory for the 
aperiodic solution. The particular case V,/x = - (2+ S2)/4S provides the soliton sol- 
ution corresponding to curve (b) in figure 3(c). This solution is a kink-like soliton 
which describes the transition from the region O = -0, to the region 0 = eo drawn in 
figure 6. Periodic solutions oscillating around either Q = T?T (-(2+ S2)/4S < V0/x < 
S/4-1)) or 0 = 0  ( S / 4 - 1 < V 0 / x < l + S / 4 )  correspond to curve (c) in figure 3(c). 
The aperiodic and periodic solutions corresponding to this situation have not been 

and 4(c). Nevertheless, the particular soliton solutions can be examined with some 
more details for each range of S. 
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3.4. Soliton solutions 

Case (i). For O s S < 1  and V0/,y=S/4-1, we have shown that equation (15a)  
possesses a kink-like solution or 2s-soliton which represents the transition from the 
state O =  -s ( O = - x / 2 ,  dipoles downwards) to the state 0= s ( O =  s / 2 ,  dipoles 
upwards). By solving equations (15a) and (156) this particular solution reads as 

O = r2 tan-'[cosh p sinh([/l)] ( 1 6 ~ )  

where we have set 

Moreover, the mechanical state of the lattice is given by the elongational and shear 
deformations computed from equations (14a) and (14b), respectively. This solution 

the system can be calculated from the Hamiltonian density ( I l ) ,  which gives 
is p!o::cd in fig0;c 4(b) a!ozg Kith the dcfsrrr.atio!?s. For this czsc !he totz! ccerpy nf 

E -1 tan-l(sinh p ) )  
I\ - Eso ( (1 - w) cosh p tanh p 
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Figure 5. Configuration A solutions in lattice deformations ( i )  and (ii), and rotation (iii) 
corresponding to  the trajectories in figure X b )  ( 6 < - l )  for ( a )  Vo/x<6/4-I ,  aperiodic 
solution, ( b )  V 0 / x = S / 4 - I ,  kink solution, ( e )  S / 4 - l <  Vo/x<-(2+S')/4S, periodic 
solution (trajectory close to curve (b) in figure 3 ( b )  but below), (e ' )  same conditions as in 
(e) but for a trajectory close to curve (d) in figure 3 ( b ) ,  i d )  V,Ix= 1+6/4, pulse soliton 
and (d') same conditions as in the case i d )  but for 6<-2.  
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ill 4 

( d l  

Figure 5. (continued) 

(d’l 

+- liil 

(ii i l  

-BO 

Figure 6. Configuration A solutions in lattice deformations (i) and (ii), and rotation (iii) 
corresponding to curve (b) in figure 3(c) ( 6 > 1 )  for VoIx=-(2+6’) /46,  ‘small’ kink 
soliton. 
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with 

(17b) 

ESG = Eo/- Eo = 8 4 .  ( 1 7 ~ )  

a 
ac w =  -fc( l -C')-( log~S~) 

We note that if S goes to  zero (no coupling) the energy (17a) reduces to the usual 
energy of the sine-Gordon soliton Eso.  However, the energy becomes infinite when 
the soliton velocity approaches unity. The soliton thickness can be also obtained as 

(18) 

This is a remarkable result because the soliton thickness does not depend on the 
coupling. This thickness tends towards zero as the velocity C goes to 1. On the other 
hand, when S goes to 1, then p becomes infinite and the solution (16) is no longer 
valid. However, the limiting case can be obtained and it reads as 

0 = 7 2  tan-'(f/l). (19) 

Case (ii). An important situation happens for S <O, the soliton solution splits into 
two sine-Gordon solitons and the solution (16a) takes on the form 

s=*;(@,-@;oj (ion) 

e = ?il/cosh p = ?im/fi. 

where we have set 

@& = 4 t a n - ' ( e ( A y  (20b) 

S = -sinh' p p = A / l  l , = l / ~ c o s h p .  (20c) 
-- -L..-"-.-L-.:- I ---. L I :.. ".:I, A"c-".4 L.. :.... , I L L \  I...& *L^ ,..-"&I. ^* __". 11,c G,m,ecLGL,?,L,G rGrrgLrl 1 1J J U l l  UGIIILciU "J  rqUeLL"L1 ( l " V ,  V U L  LllG lrrlglrl at LC 3 1  

differs. Taken separately, each part of the solution (20a) satisfies the classical sine- 
Gordon equation. We must point out that the soliton solution given by.equations ( 1 6 ~ )  
and (20a) can be compared to the 2m-soliton solution for the double sine-Gordon 
equation in different contexts [35-371. Equation (20a) shows clearly the meaning of 
the parameter A associated with 8 :  the Z?r-soliton solution can be considered as two 

rnn+rnA *+ 1 1 2  onrl  ~ a n ~ ~ ~ + e A  hIr the Ai=+nnre  ? A  Fimnvr < ( h )  nivar the  a n l i t n n  

solution for this case. However, for -1 < S < 0, there exists only one inflexion point 
at ( f  = 0,O = 0), but for 6 < -1 the curve (see figure 5 (  b ) )  has three inflexion points 
at 0 = 0 and 0 = F 0,. From the physical point of view, the present soliton corresponds 
to a moving domain wall which separates two domains with opposite orientations 
involving the lattice deformations. The total energy of the system for the solution (20) 
CI" be wri:!te.n. 1 s  

,.~~"...".."-- .... "-". , - "..-"-r".".ll"J ... " -.-.-..----. . . D  -.--\-, D.." I...---... ".. 

EA=~Eso[(1-w)coshp+(1+w)p/sinhp] (21) 

where w and ESc are still given by equations (176) and (17c). As in the previous case 
the energy goes to infinity as C tends towards 1 and we recover the classical energy 
of the sine-Gordon soliton when 6 goes to zero. In the case -1  S 6 < 0, the soliton 
width is given by 

e =  ?il cosh p (22a) 

e=Zl[cosh-'(sinhp)+(?i-00) tanhp]. (226) 

whereas for S < -1, it is defined by 
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We recall that the angle 0, is such that cos O,=-l/S. Notice that from equations 
(22a) and (~OC),  the soliton width does not depend on the coupling, but this is not 
true for equation (226). As it has been mentioned above, in the case S c - 1  and 
V,/x = 1 + S/4, we also have a pulse-like soliton solution (see curve (d) in figure 3(b)) 
which takes on the form 
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with 

2c0s0 , - c0s0 ,=1  io= 1/fi tan(@,/2).  (236) 

The characteristic length I is, once again, given by equation (16b). This solution is 
depicted in figure 5(d) together with the deformation of the lattice. From equation 
(23a), it can be seen that 0, is just the maximum of the pulse-like soliton; it depends, 
of course, on S or 0,. The energy of the system for this solution is obtained after some 
algebra: 

EA=tEsG{(i+ w )  tan(0,/2)-(l-  w )  cos(0,/2) tanh-'[sin(0,/2)]]. (24) 

The soliton width is computed by taking the particular shape of this soliton into account 

e = 21{cosh-'[tan(0,/2)/tan(00/2)1+ O0/sin(0,/2)} (25) 

where all the parameters have been defined previously. It is interesting to note that 
when 8 goes to -1 then both 0, and 0, tends towards zero and the only possible 
solution is 0 = 0. Accordingly, we can see that the soliton energy (24) goes to zero 
and the soliton thickness becomes infinite. Furthermore, it can be shown that the 
soliton solution (23a) is the difference of two sine-Gordon solitons as follows: 

.---I ..._ c--l auu w c  ,,,,U 

Q=*;(o;G-O,) (26a) 

where we have 

0' 9c .-4tan-'(e'-""') - (266) 

sinh(.$,/i) = tan(0,/2). ( 2 6 ~ )  

Then, the decomposition carried out for the kink-like soliton holds true for the pulse-like 
solution as well. This decomposition is particularly striking for 6 < -2 for which we 
have a large pulse-like soliton and the soliton in shear deformation breaks into two 
humps as represented in figure 5(d'). 

Case (iii). For S >  1 and V,/x=-(2+S2)/4S, we have shown the existence of a 
kink-like soliton between -0, and 0,. This solution takes on the form 

0 = *2 tan-'[tan(0,/2) tanh(t/O] (270) 

cos Q, = -1/S 1, = 2 / 4 3  sin 0, (276) 

where we have put 

and the length 1 is always given by equation (166). This solution, which is called a 
'small' kink, is plotted in figure 6. If S goes to 1, then 0, tends towards T but by 
means of an asymptotic expansion the solution (27) is reduced identically to equation 
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(19). The energy of the solution is computed from the Hamiltonian density (11) and 
after rather lengthy calculations we arrive at 

(28) 
ESG E , = a  [ ( I  - w)O,+ (1 + w )  tan O,] 

where the energy of the sine-Gordon soliton has been introduced as in the other cases. 
The energy becomes infinite when the soliton velocity tends towards its upper limit. 
At iength, the soiiton thickness is given by 

e = Ool/tan(Oo/2). (29) 

We notice that the thickness goes to zero as the velocity tends towards 1. When 6 goes 
to 1 we recover the limiting case met for O <  S < 1. As a general rule, for each case, 
the characteristic length 1 tends to zero whereas the soliton energy becomes infinite 
when the soiiton veiocity approaches its upper iimit (C + i) .  On the other hand, we 
see that the problem of the one-soliton solution (both kink- and pulse-shaped solitons) 
to the somewhat complicated set of equations (loa)-( 1Oc) is equivalent to the solution 
to the nonlinear ordinary differential equation (12) which can be formally deduced 
from a double sine-Gordon equation when a one-soliton solution is sought [36,381. 
Nevertheless, the double sine-Gordon equation is invariant under a Lorentz transforma- 
tion but this is obviously not true for the system (10). This is the reason why the 
characteristic length I takes on a relativistic form (see equation (16a)) but the length 
at rest depends, of course, on the type of solution being considered. The same remark 
holds true for the energy which, for each case, is the product of the sine-Gordon soliton 
energy by a term involving the coupling coefficients. The energy of the sine-Gordon 
part (when S =0) can be also put in a relativistic form (see equation (17a))  where Eo 
:- r h -  ---_I.. - C * I . -  --I:&-- -*-a-+ U -... _.,__ the -..I:+-- -..a --., +h..- -ht-i-nrl f-rnnnh ,a L U G  =rr=,gy U, LllG J V l l L Y l l  a, L C I L .  1 1 U W S " G l )  L.LC D U L l l U l '  "L.C'&v L L l U I  " " L - l l l b u  1"1 bo1111 

situation cannot be deduced from the equivalent double sine-Gordon system because 
the energy of our physical system is computed from the Hamiltonian density (11) 
corresponding to the set of coupled equations (lOa)-(lOc) which has nothing to do 
with the double sine-Gordon problem. 

4. Coherent structures for configuration B 

4.1. Equations of motion for the discrete system 

We now turn our attention to the second configuration by putting 9. = 7112 in the 
Hamiltonian (1) and energies (2)-(6). We can rewrite the Hamiltonian in terms of the 
angle 'p. as follows: 

f K E (U"+] - u.1 COS(P.+i (30) 

where we have set 

K,=C:(--E--Y/2) p --Y/(2E + U )  K=68/(1(2E+U) 

and where the time variable has been rescaled into ~ J - ( E  + u / 2 ) .  Moreover, we assume 
that E + v/2 < 0. The transverse displacements have not been considered because they 
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do not play any role in this situation. The equations of motion derive from equation 
(30) and read as 
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U" - c:( U"+i -2U. + U"-,)  

Q n t i - Q n - i  Q ~ + I - ~ Q ~ + Q ~ - ,  
= - z K  sin( )s in(  

k -[sin(rp,+, - v " ) - s i n ( ~ ~  -Q"-,)I 
= dsin(Qp.+,  + Q.)+sin(vp. + vn-dl 

--K[(U.+I - U.) sin(rp.+, -Q.)-(U. - U"-,) sin(rp. -49-JI.  (316) 
The interesting set of equations consists of a wave equation for the longitudinal 
displacement (equation (31a)) nonlinearly coupled to the dipole rotation governed by 
an equation of the sine-Gordon type (equation (316)). We note that the coupling terms 
in equations (31a) and (316) differ, in their nature, from those appearing in the 
equations for the configuration A. However, the characteristic feature of equations 
(31a) and (316) will be clearer by considering the continuum approximation. 

4.2. Continuum approximation 

Using the same hypotheses as in the first configuration we can consider the continuum 
approximation associated with slowly extended waves with respect to the lattice spacing. 
Then, the set of coupled differential-difference equations becomes 

U,, - ct U, = fa ( QX): ( 3 2 ~ )  

@ , 8 - @ n = A  sin@-a(Ux@x)x (326) 
where we have set 01 = ~ / 2 ,  A =4p, @ = 2 ~ ,  and U has been changed into U / 2 .  If the 
coupling between the displacement and the rotation is removed we recover the usual 
sine-Gordon equation [33] for the rotation and the elastic wave equation for the 
longitudinal displacement. However, because ofthe coupling, the solutions to equations 
(32a) and (326) is much more complicated. It should be mentioned that the linearized 
equations about a steady state lead to an uncoupled system, since the coupling terms 
are nonlinear in space derivatives. Then, we do not recover the usual linear theory of 
micropolar or oriented media [21, 301. 

Symmetry properties of the set (32) can be discussed; thus, let (U, @) be a solution 
to equations (32a) and (326) for A > 0, then, (i) (U, @ + T )  is a solution by changing 
A into -A, from now on we take A > 0, (ii) (U, -@) and (U, @+2k?i)  are also solutions 
to equations ( 3 2 a )  and (326) and (iii) (-U,@) is a solution by replacing X by -X. 
Equations (32a) and (326) have steady solutions such that U , = ( U , ) ,  (uniform 
deformation) and @ = k v  (k E E) which are equilibrium points of the physical problem. 
As in the first configuration the rescaling d r, d X and 6 a allows one to get rid 
of the coefficient A from equations (32a) and (326) and the characteristic length of 
the nonlinear excitations then depends on A. 

Finally, the set of equations (32a) and (32b) can be derived from the following 
Hamiltonian density: 

he-  h,=f( U:+&:) +f (  C t U : + @ : )  + A  cos @-iaUx@: .  (33) 

Note that, in the framework of the present situation, the dynamical problem of the 
coupled motions in rotation and elongational deformation is quite similar to that of 
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a compressible chain of dipoles [14] or a compressible Heisenberg chain of spins 
[12,13].  

4.3. Study of nonlinear excitations 

We search for solutions (U, @) to equations (32a)  and (32b) as functions of the variable 
5 = X-X,- Ct where C is the phase velocity and Xu is some constant. Then, the first 
eqc&: of &p se! (32)  CZ" be ifi!egra!cd v;i:h resped to' to yie!d 

where A is a constant of integration and C f rC, has been assumed. On substituting 
equation ( 3 4 )  into equation (32b) ,  we arrived at an equation for @ only, which can 
be written as 

41-2[1-2(@f)2-a]@K-sin @ = O  (35a)  
where we have set 

Equation (35a)  can be integrated once more to yield 

1 ~ 4 ( @ C ) 4 - 2 a l - 2 ( @ ~ ) 2 + ~ ~ ~ @ + b = 0 .  (36) 

l -2 (@f)2  = a  - v(@) (37a)  
V(@) = J a 2 +  b -cos (D. (37b) 

We can solve equation (36) with respect to and we find 

We have chosen the minus sign in equation (37a)  because the two solutions to equation 
(36)  leads qualitatively to the same classes of nonlinear excitations. Equation (370) 
can be associated with the motion of a particle of mass 1 / 1 2  in the periodic potential 
(376) .  Among the overall possible solutions to equations (37),  which are mainly periodic 
waves, special attention is devoted to solutions such that a and b satisfy a2+ b - 1 L 0,  
which means that the potential V(@) is defined everywhere. The periodic potential is 
drawn in figure 7 within the segment [-T, T I .  The equilibrium points of the system 
are @ = FT, only if b = 1 .  The discussion of the different kinds of solutions can be 
qualitatively examined with the help of the trajectories in the plane ((D,mt), which 
are plotted in figure 8. If b < - 1 ,  there is no solution, for b = - 1  then @ = 0 is solution. 
For lbl< 1 ,  we have periodic solutions (curve (a) in figure 8). The particular case b = 1 
corresponds to the soliton solution (curve (b) in figure 8) and, finally, for b > 1 aperiodic 
solutions exist (curve (c) in figure 8). These three types of solutions are illustrated in 
figure 9 (periodic wave), figure 10 (soliton solution) and figure 1 1  (aperiodic solution) 
for the rotation and deformation. 

0 
-n 01 n 

Figure 7. Configuration B: sketch of the potential V(0) (equation (37b) ) .  

I 



2168 M K Sayadi and J Pouget 

Figure 8. Configuration 8: trajectories in the phase plane (@,eG) corresponding to the 
potential drawn in figure 7 for different values of (I and b. 

1 
I bl 

Figure 9. Configuration B: solution in ( 0 )  elongatianal defamation and ( b )  rotation for 
I b / <  I ,  periodic solution. 

I/- -n 

Figure IO. Configuration B: solution in ( a )  elongational deformation and ( b )  rotation for 
b = I ,  soliton solution. 

4.4. Soliton solutions 

Let us focus on a particular case for which b = 1 and (I =a. This case allows us to 
reach a solution analytically and equation (37) reduces to 

r-2(@p,)2=JZ[1 -Isin(@/2)l]. (38) 

Note that equation (38), within each segment -2.rrSQSO and Oc@SZ.r r ,  is similar 
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1 uz la I 

\ 
0 

I 
Figure 11. Configuration E: solution in ( a )  elongational deformation and ( b )  rotation for 
b > 1, aperiodic solution. 

to the usual sine-Gordon equation. This equation can he solved and we find 

3 n  
p = sign(6) 4 tan-l(e[(lcl+A)lLl) -r) 

A/ L =  log(1 +&) L = 12 '1~ .  (396) 

The soliton solution (39) corresponds to a rotation of the dipoles about the chain axis 
from the region Q = - ~ / 2  ( 6 +  -m) to the region Q = n/2 (c+m). The elongation can 
be computed from equation (34) and it takes on a rather simple form 

(39a) ( 
with 

U, =- I-C' 2a + LZ( ct 2a - C2) [ 2 s e c h Z ( v ) - 3 ] .  (40) 

The coupled solitons in rotation and elongational deformation are drawn in figure 10. 
From equation (40) we can see that the elongation is mostly non-zero in both domains 
Q = -7r/2 and rp = VIZ, this means that the dipoles induce a stretching or compression 
along the chain axis. According to equation (40) and figure 10, we notice that the 
elongational deformation is a regular spiky solitary wave (or cusp soliton), since the 
derivative at the maximum of the amplitude is finite but it does not pass through zero. 
It is also interesting to note that the special choice of the constants a and 6 does not 
impose any restriction on the soliton velocity C. However, from the definition of I (see 
equation (356)). the solution (390) is valid only if IClCC, (CL> l ) ,  which seems to 
he surprising in comparison with the classical sine-Gordon system for which we must 
have IC/ < 1. Moreover, it is remarkable that the characteristic length I has a relativistic 
expression where CL is the upper limit of the soliton velocity (see equation (356)). 

The soliton energy can be calculated from the Hamiltonian density (33) and after 
rather lengthy arithmetic we arrive at 

2 c z  
ct- c2 EB = 4 ( f i  - 1 )LA (& + 3 )  + f(& - f )  (~ - 1) 

2c2 (1  - c2 -5 a)]) (41) 
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which is in fact valid if 01 # 0. The soliton width can be written as 
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which goes to zero when C tends towards C,. When the coupling a tends towards 
zero the solution seems to become singular; indeed, from the definition of I and 
equation (366) we can see that I goes to zero and the energy (41) becomes infinite. In 
fact, when I tends towards zero, the soliton becomes very narrow and the soliton looks 
like the step function: Q = - T / ~  for [<O and Q = 7r/2 for [ > O ;  nevertheless, the 
continuum approximation breaks. 

5. Closing remarks 

The existence of nonlinear localized structures of the soliton type has been examined 
on the basis of an anharmonic one-dimensional lattice model made of a deformable 
monoatomic chain endowed with rotatory molecular groups. The nonlinear phenomena 
are intimately connected with the additional degrees of freedom inherent :o the 
rotational motions of microscopic electric dipoles, which allows for particular inter- 
atomic interactions. Thus, the model accounts for the nonlinear coupling between the 
rotational motions and elastic deformations; hence the propagation of coupled solitons 
in rotation and lattice deformation. The nonlinear excitations of the soliton type studied 
in the present work can take place in a large variety of materials which involve a rather 
fine description of miCrOstruCtured media with intemal degrees of freedom. Thus, the 
above-developed model can be applied to molecular ferroelectric crystals, of which 
sodium nitrite provides a good candidate. Then, insofar as the structure in domains 
and walls is considered, the physical meaning of the soliton in rotation corresponds 
to a moving waii coupied to mechanicai state of the iattice [34j. i n  addition, the 
physical meaning of the nonlinear periodic excitations found in section 3.1 is very 
close to the problem of the incommensurate-commensurate phase transitions [40]. On 
the other hand, the model is also suitable for polymer materials [6]. The propagation 
of kink solutions for such a model has been suggested in the context of the piezoelectric 
long chains of macromolecules of polymers such as polyvinylidene fluoride (PVFJ 
where eiecrric dipoies associared with the CF, units perform roraiionai motions about 
the chain axis [7,8]. Another example is given by the propagating nature of the kink 
twist defects in crystalline polyethylene where a rotational degree of freedom is 
associated with the CH, units [6,26]. The macromolecular structure of polytetra- 
fluorethylene (PTFE) consisting of successive CF, units is also a nice physical support 
to the present lattice model. Moreover, extension of the model to biological 
macromoiecuies such as heiicai DNA can be envisaged [ S ,  iO,4ij and for which both 
bending and twisting of the molecular chain must be taken into account. 

As a general rule, the system both in its discrete nature and continuum version is 
described by a set of nonlinear equations which consists of two wave equations for 
the lattice displacements and a sine-Gordon equation for the rotation, these equations 
being nonlinearly coupled. A configuration, referred to as A, for which all the dipoles 

propagation of coupled solitons in rotation, elongation and shear deformation. 
Moreover, it has been shown that, for this configuration, the one-soliton problem of 
the set of nonlinearly coupled equations is equivalent to solving a double sineGordon 
equation, which in fact reduces the problem to solve a nonlinear ordinary differential 

ioiaie aboiii aaij peipen:icu;ai io ;he &ain is his; eiiamiiieb aiid io :he 
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equation with respect to the phase variable. In this situation, different classes of soliton 
solutions are placed in evidence according to the coupling coefficients between rotations 
and displacements. The second configuration, referred to as B, where all the molecular 
groups or dipoles rotate about the chain axis is next proposed. In this case, the coupling 
between the rotational motion and longitudinal displacement leads to a more compli- 
cated problem and a singularity of the soliton solution appeared if the coupling tends 
towards zero. In addition, the consistency of every solution with the continuum 
approximation has been checked by means of numerical simulations on the discrete 
system and a good agreement has been found [28,42]. 

Nevertheless, some additional work remains in various aspects. We are interested 
in the problem which brings into play the combination of both configurations A and 9, 
and two rotational angles of the dipoles are therefore considered. In this case, we can 
have a complex soliton dynamic and we must examine the stability of one of the 
configurations with respect to small perturbations of the other configuration. Accord- 
ingly, a soliton of configuration A may be transformed, while propagating, into a 
soliton of configuration A and vice versa through the instability process. Such a situation 
has been pointed out in  ferromagnetic crystal [43-451. Other important solutions can 
be investigated by stipulating that the molecular groups or dipoles suffer small oscilla- 
tions about one of the stable equilibrium points, thus creating a weak dispersion. Then, 
by using a semi-discrete procedure we can look for modulated-wave solutions which 
possess envelope solitons [46,47]. The influence of an external jield and damping on 
the soliton movement seems to be an important problem. In fact, an external field acts 
on the molecular groups or dipoles as a torque. This has allowed us to study the 
transient motion of a soliton from rest [48,49]. At length, a more striking problem is 
to know how the discreteness effects act on the soliton dynamics. This problem is 
particularly well addressed by considering the influence of a time-dependent field and 
damping on the soliton propagation on the discrete lattice, hence the possible transition 
to deterministic chaos: this problem will be presented elsewhere. 
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